A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
نویسندگان
چکیده مقاله:
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detecting process using hyperspectral data is the spectral variation due to topography variability and spectral mixing. Moreover, imperfect sensor noises and atmospheric influences on the target radiance together lead the observed spectral feature of the same material to change in different situations. Target detection methods model the spectral variation in order to compensate their effects on the process. Statistics and subspace based approaches are the two most important methods used in detection process. Statistics and subspace based approaches are the two most important methods used in detection process. Using special statistical assumptions and modeling the spectral variation with limited number of parameters are the main disadvantages of these methods. One of the strongest detection method is the sparse representation method. It models the differences in the spectral features of targets and background using dictionary matrices. Indeed, it constructs a complete subspace of materials spectrum and their variations. Building a pure dictionary (clean of spectral mixing) is the main challenge associated in the sparse representation method in the detecting process. Three methods- the dual windows, the global and the learned dictionary- have been introduced in literature. In the dual windows, since it uses outer window to select the target pixels, spectral mixing has not been cleaned. In the learned dictionary as it uses random picked pixels in order to learn the dictionary, the risk of spectral mixing exists. Furthermore, spectral mixing exists in general method. Considering the disadvantages of the aforementioned methods, in this thesis we introduce a new method to construct the dictionary. Not only do the dictionary atoms provided by this method construct a complete subspace and model spectral variation, but they also are as pure as possible. In the proposed method, it is tried to achieve two main purposes which are forming the background subspaces and minimizing the spectral mixing of atoms in the dictionary and target. To this end, correlations between target spectrum and all image pixels are calculated. Afterwards, using image pixels which have different degrees of correlation with target spectrum, different dictionaries are created for the background. Finally, a dictionary is selected from the created dictionaries which presents a complete subspace of image and the subspace also has the lowest correlation with the target spectrum. In this paper, the proposed method of making a dictionary along with a sparsity model, called SRBBH is used and introduced as method Proposed+SRBBH. To survey the efficiency of the proposed methods, a simulation data set and three real data were used, and in order to evaluate the methods, the area below the ROC chart level was used. In experiments performed on both Cuprite and Sandiego data, the area under the graph was 0.9997 and 0.9961, respectively, which shows higher values than other methods. For the other two sets of data, the proposed method performs better than other methods of target detection.
منابع مشابه
Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery
With increasing applications of hyperspectral imagery (HSI) in agriculture, mineralogy, military and other fields, one of the fundamental tasks is accurate detection of target of interest. In this paper, improved sparse representation approaches using adaptive spatial support are proposed for effective target detection in HSI. For conventional sparse representation, a HSI pixel is represented a...
متن کاملA New Subspace Method for Anomaly Detection in Hyperspectral Imagery
Recently, anomaly detection has been one of the most interesting researches in hyperspectral images (HSIs) applications. Generally, anomalies in HSIs are rare pixels. The Reed–Xiaoli (RX) algorithm is a benchmark anomaly detector for HSIs, which uses the local Gaussian model generally [1]. But for RX algorithm there are two issues to be considered. First it requires the estimation of model para...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملCombined sparse and collaborative representation for hyperspectral target detection
A novel algorithm that combines sparse and collaborative representation is proposed for target detection in hyperspectral imagery. Target detection is achieved by the representation of a testing pixel using a target library and a background library. Due to the fact that sparse representation encourages competition among atoms while collaborative representation tends to use all the atoms, the te...
متن کاملA New Method for Target Detection in Hyperspectral Imagery Based on Extended Morphological Profiles
Hyperspectral remote sensing increases the detectability of pixeland subpixel-sized targets by exploiting the finer detail in the spectral signatures. In this paper, we describe a new unsupervised algorithm for the detection of both full pixel and mixed pixel targets in hyperspectral imagery. The proposed method automatically resolves targets by using extended mathematical morphology operations...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 111- 132
تاریخ انتشار 2020-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023